

Hakuna Resort

AE Senior Thesis 2015

Young Jeon Structural Option Advisor: Heather Sustersic

Presentation Outline

Introduction

- Existing Structure
- Thesis Topics
- Structural Depth
- Architectural Breadth
- Conclusion

Building Statistics

- Hakuna Resort (fictitious)
- Swiftwater, PA (fictitious)
- Function type: Residential (R-1)
- Project total SF: 786,125 SF
- Focused SF: 143,107 SF
- 8 story tall
- Date of construction: March 2014 Summer 2015
- Project Total Cost: \$230 million

Owner	LMN Development, LLC
Architect	Architectural Design Consultants
GC	Kraemer Brothers, LLC
MEP/Structural	Harwood Engineering Consultants
Civil	Pennoni Associates, INC.

Existing Structure

- 10" & 12" Precast Prestressed Hollow Core Planks with 3" composite topping
- Load bearing masonry shear walls
- Reinforced concrete shear walls
- Steel moment frames

E

S

A

 C_{-}

Foundation

Portion unexcavated

E

S

A

C

- Strip footing for concrete walls
- Spread footing for concrete columns
- Footing thickness varies from 2' to 3'-6"
- #9 to #11 reinforcements

Structural Depth

Purpose:

• To compare staggered truss system with existing load bearing masonry shear wall

Advantages:

S

A

С

- Repetitive floor layout
- Works well with existing hollow core planks
- Potential for change in cost and schedule

Structural Depth

Purpose:

 To compare staggered truss system with existing load bearing masonry shear wall

Advantages:

S

А

С

- Repetitive floor layout
- Works well with existing hollow core planks
- Potential for change in cost and schedule

Architectural Breadth

Purpose:

- To redesign first and second floor
- To redesign exterior façade

Reasons:

- First and second floor requires open spaces for service areas
- Existing façade is boring. Add more exciting • features

Structural Depth

Purpose:

 To compare staggered truss system with existing load bearing masonry shear wall

Advantages:

- Repetitive floor layout
- Works well with existing hollow core planks
- Potential for change in cost and schedule

Architectural Breadth

Purpose:

- To redesign first and second floor
- To redesign exterior façade

Reasons:

- First and second floor requires open spaces for service areas
- Existing façade is boring. Add more exciting features

Construction Breadth

Evaluate the new project construction schedule and cost with the staggered truss system and compare the outcomes

Staggered Truss System

AISC Design Guide 14 – Staggered Truss Framing Systems was used for basic understanding of the system and hand calculation procedure guidance

Central Vierendeel panel for corridor W-shape chords W-shape columns HSS-shape verticals and diagonals

Example Truss Frame from AISC Design Guide 14

Representation of staggering of the trusses, allowing more square footage without blocking of walls at each level at every structural gridlines.

Staggered Truss System

Dead Load

- 68 psf hollow core planks
- 37.5 psf composite topping
- 10 psf super imposed load

Live Load

S

С

- 40 psf hotel rooms
- 100 psf corridor
- 100 psf lobby area

Truss 1

Staggered Truss System

Finish Designs

S

A

С

Eleor	Chord	Diagonal	Column	
FIOU	Section	Section	Section	
Roof	W10x60	HSS8x6x1/2	W12x65	
8	W10x60	HSS8x6x1/2	W12x65	
7	W10x77	HSS8x6x1/2	W12x87	
6	W10x77	HSS8x6x1/2	W12x87	
5	W10x88	HSS10x8x1/2	W12x120	
4	W10x88	HSS10x8x1/2	W12x120	
3	W10x112	HSS10x8x1/2	W12x152	
2	W10x112	HSS10x8x1/2	W12x152	

- Chords continuous and fixed at the ends
- Diagonal and vertical members pinned at both ends
- Vierendeel panels all fixed
- Fixed base

Deflections

Chord deflection

S

C

- Largest deflection = 0.919" < L/240 = 3.35"
- Largest LL deflection = 0.29" < L/360 = 2.23"

Column lateral deflection (wind)

• Roof displacement = 0.526" < L/400 = 2.01"

Architectural Breadth

 Redesign lower levels floor layout to accommodate the restrictiveness of truss opening.

C

 Redesign the façade to catch people's attention when they first encounter the resort

Floorplan Redesign

Floorplan Redesign

Façade Redesign

Façade Redesign

Façade Redesign

Conclusion

Structural

- Staggered truss system is feasible design
- Successfully resist gravity loads and lateral loads in the N-S direction
- Great educational experience

S

А

 \frown

- Floor layout adjusted according to staggered truss frame layout
- May not be the best layout for the service area for privacy
- Redesigned hotel façade to be more exciting when encountered

Architectural Breadth

Construction Breadth

- Overall cost increased by \$200,000 (0.09% of total project cost)
- Schedule reduced by 3 days

Special Thanks to...

LMN Development, LLC

All AE Structural Faculty members Especially Prof. Sustersic

My family and friends

Heavenly Father and His Son Jesus Christ

Thank you!

Questions?

	Truss Chord								
Floor	phi	M _{ug}	M _{uw}	Mu	Pu	Section			
Roof	9%	44.4	27.25	71.65	476.4	W10x60			
8	24%	44.4	72.78	117.18	476.4	W10x60			
7	36%	44.4	109.83	154.23	476.4	W10x77			
6	48%	44.4	146.17	190.57	476.4	W10x77			
5	60%	44.4	181.68	226.08	476.4	W10x88			
4	72%	44.4	216.23	260.63	476.4	W10x88			
3	85%	44.4	256.78	301.18	476.4	W10x112			
2	100%	44.4	302.34	346.74	476.4	W10x112			

Diagonal Member								
	v	vind	sei	smic	Load			
Floor	phi	Applied	phi	Applied	1.2D+.8W	1.2D+1.6	1.2D+E+L	Section
	-	Load (kips)	-	Load (kips)		W+L		
Roof	9%	13.80	25%	44.70	99.48	149.42	172.04	HSS8x6x1/2
8	24%	36.85	43%	76.27	117.92	186.30	203.61	HSS8x6x1/2
7	36%	55.61	59%	103.62	132.93	216.31	230.96	HSS8x6x1/2
6	48%	74.00	72%	126.77	147.64	245.74	254.11	HSS8x6x1/2
5	60%	91.98	82%	145.78	162.03	274.51	273.12	HSS10x8x1/2
4	72%	109.47	91%	160.72	176.02	302.49	288.06	HSS10x8x1/2
3	85%	130.00	97%	171.64	192.44	335.34	298.98	HSS10x8x1/2
2	100%	153.07	100%	177.00	210.90	372.25	304.34	HSS10x8x1/2
Gound								

	Column 6A											
	Axial Forcs Moment					Load Combinations						
	fl	oor		tot	al				1D	1.2D	+1.6L	Section
Floor	DL	DL+RLL	Ext wall	DL	DL+RLL	EXT Wall	DL	Pu	Mu	Pu	Mu	
Roof	207	264	16	207	264	16	55	289.8	77	351.032	66	W12x65
8			16	207	264	32		289.8	0	370.232	0	W12x65
7	207	264	16	414	528	48	65	579.6	91	721.2641	78	W12x87
6			16	414	528	64		579.6	0	740.4641	0	W12x87
5	207	264	16	621	792	80	77	869.4	107.8	1091.496	92.4	W12x120
4			16	621	792	96		869.4	0	1110.696	0	W12x120
3	207	264	16	828	1056	112	82	1159.2	114.8	1461.728	98.4	W12x152
2			16	828	1056	128		1159.2	0	1480.928	0	W12x152
Gound	207	264	16	1035	1320	144	97	1449	135.8	1831.96	116.4	

Lateral Story Drifts (in)						
Level	1.2D+L+1.6W	1.2D+L+E				
Roof	0.009	0.017				
8	0.014	0.024				
7	0.025	0.032				
6	0.027	0.035				
5	0.031	0.034				
4	0.043	0.063				
3	0.147	0.115				
2	0.23	0.182				
1	0	0				
Total	0.526	0.502				

Gravity Deflections (in)					
Chord Size	1.2D+1.6L	1.6L			
W10x60	0.919	0.29			
W10x77	0.883	0.243			
W10x88	0.854	0.18			
W10x112	0.691	0.183			